CLEVITE[®]/VICTOR REINZ[®]/PERFECT CIRCLE[®]

TB2056

Issued: 8/21/2001

Crankshaft Thrust Faces – Severe Use Recommendations

Crankshaft surface finish and shape are key factors affecting the performance of all bearings. These factors become even more critical for thrust surfaces. As in any bearing, increased loading reduces oil film thickness between shaft and bearing surfaces. This is a much more critical situation in thrust bearings due to their flat faces which make formation of an oil film extremely difficult. Radial bearings (those which carry loads in a radial direction like rod and main bearings) form a natural wedge where shaft and bearing surfaces come together in the clearance space. Shaft rotation pulls a wedge of oil into the loaded area of the bearing and forms an oil film that supports the load.

Thrust faces, on the other hand, are made up of two flat surfaces that do not form a natural wedge where they meet. In order to help form an oil film, artificial wedge shaped areas are machined into the bearing surfaces at the ends and sometimes adjacent to the grooves. In spite of all the common design efforts, thrust bearings still run on a much thinner film of oil that makes crankshaft surface finish critical in the successful performance of these bearings.

Recent samples of thrust face surface finish on crankshafts from blown fuel "Hemi" engines have confirmed that better finishes resulted in a reduced rate of bearing distress. The study also showed that when no damage occurred, the crankshaft surface finish was improved after running. The surface finishes of 12 crankshafts were measured (7 new and 5 used). The new shafts ranged from a high of 30 Ra to a low of 5 Ra. The used shafts had a very similar range from 31Ra to 4 Ra. Although this represents only a small sampling, it does demonstrate a correlation between surface finish and performance when the condition of mating bearing surfaces was evaluated. Prior to these measurements, race experience had shown no problems on a crankshaft with a thrust-face Ra of 6 and DID show problems on crankshafts when the Ra was over 20!

Obtaining a good finish on the thrust face of a crankshaft is difficult to do because it uses side-wheel grinding. Side grinding causes marks that spiral outward toward the OD of the thrust face and may also cause crosshatch marks resembling honing patterns. Both patterns are detrimental to the formation of an oil film because they work like wipers as the shaft rotates. Grinding marks must be removed by polishing. Only a circular pattern should remain. Surface finish should be checked in a tangential direction and must be held to 10 Ra max. The thrust surface should be flat within .0002" max.

AVOID - CROSSHATCH PATTERN

For further information contact:

Clevite Engine Parts Division • 1350 Eisenhower Place • Ann Arbor, Michigan 48108-3388 U.S.A.